मराठी

Find the range of the following functions given by |x-4|x-4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the range of the following functions given by `|x - 4|/(x - 4)`

बेरीज

उत्तर

f(x) = `|x - 4|/(x - 4)`

= `{{:((x - 4)/(x - 4) = 1",",  x > 4),((-(x - 4))/(x - 4) = -1",", x < 4):}`

Thus the range of `|x - 4|/(x - 4) = {1, -1}`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Solved Examples [पृष्ठ २५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Solved Examples | Q 8.(i) | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

3–4 = `1/81`


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the domain of the following function.

f(x) = [x] + x


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Let f(x) = `sqrt(1 + x^2)`, then ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×