मराठी

Let F : [0, ∞) → R and G : R → R Be Defined by F ( X ) = √ X and G(X) = X. Find F + G, F − G, Fg and F G . - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

उत्तर

It is given that f : [0, ∞) → R and g : R → R such that

\[f\left( x \right) = \sqrt{x}\]  and g(x) = x .  \[D\left( f + g \right) = [0, \infty ) \cap R = [0, \infty )\]
So, f + g : [0, ∞) → R is given by 
\[\left( fg \right)\left( x \right) = f\left( x \right)g\left( x \right) = \sqrt{x} . x = x^\frac{3}{2}\]
\[D\left( \frac{f}{g} \right) = \left[ D\left( f \right) \cap D\left( g \right) - \left\{ x: g\left( x \right) = 0 \right\} \right] = \left( 0, \infty \right)\]
So,
\[\frac{f}{g}: \left( 0, \infty \right) \to R\]  is given by
\[\left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 9 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What is the fundamental difference between a relation and a function? Is every relation a function?


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Let f(x) = |x − 1|. Then,


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

Check if the following relation is function:


Check if the following relation is a function.


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of a square as a function of its side s


Express the area A of circle as a function of its diameter d


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

ln e = 1


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×