मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find x, if g(x) = 0 where g(x) = 6x2 + x − 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find x, if g(x) = 0 where g(x) = 6x2 + x − 2

बेरीज

उत्तर

g(x) = 0 

∴ 6x2 + x – 2 = 0

∴ (3x + 2)(2x – 1) = 0

∴ 3x + 2 = 0 or 2x – 1 = 0

∴ x = `-2/3` or x = `1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११८]

APPEARS IN

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If f(m) = m2 − 3m + 1, find `f(1/2)`


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Check if the following relation is a function.


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of a square as a function of its side s


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×