मराठी

Let a = {−2, −1, 0, 1, 2} And F : a → Z Be a Function Defined By F(X) = X2 − 2x − 3. Find:(A) Range Of F, I.E. F(A). - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).

उत्तर

(a) Given:
f (x) = x2 − 2x − 3
(−2) = (− 2)2 − 2(− 2) − 3
          = 4 + 4 – 3
          = 8 − 3 = 5
(−1) = (−1)2 − 2(−1) − 3
          = 1+ 2 − 3
          = 3 − 3 = 0
f (0) = (0)2 − 2(0) − 3
        = 0 − 0 − 3
        = − 3
(1) = (1)2 − 2(1) − 3
        = 1 − 2 − 3
        =1 − 5 = − 4
(2) = (2)2 – 2(2) − 3
        = 4 − 4 – 3
        = 4 – 7 = − 3
Thus, range of f(A) = (− 4, − 3, 0, 5).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.1 | Q 4.1 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


Which of the following are functions?


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The range of the function f(x) = |x − 1| is


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Express the area A of a square as a function of its side s


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Find the domain of f(x) = log10 (x2 − 5x + 6)


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×