मराठी

Write the Range of the Function F(X) = Ex−[X], X ∈ R. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the range of the function f(x) = ex[x]x ∈ R.

 

उत्तर

f(x) = ex[x]x ∈ R

\[\text { We know that x - [x] = {x}, which is the fractional part of any number x .}  \]
\[\text{ Thus} , f(x) = e^{{x}} \]
\[\text{ Also} , 0 \leq {x} < 1\]
\[ \Rightarrow e^0 \leq e^{{x}} < e^1 \]
\[ \Rightarrow 1 \leq f(x) < e\]
\[\text{ Thus range of f(x) is }  [1, e) . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 6 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(x + 1)


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the area A of a square as a function of its perimeter P


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

Simplify, log (log x4) – log (log x)


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


The domain of the function f(x) = log3+x (x2 - 1) is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The range of the function y = `1/(2 - sin3x)` is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×