मराठी

Let F : R+ → R, Where R+ Is the Set of All Positive Real Numbers, Such That F(X) = Loge X. Determine(A) the Image Set of the Domain Of F - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f

उत्तर

Given:
f : R+ → R
and (x) = logex .............(i)

(a) f : R+ → R
Thus, the image set of the domain f = .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.1 | Q 7.1 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


What is the fundamental difference between a relation and a function? Is every relation a function?


\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following logarithmic equation in exponential form

ln e = 1


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×