Advertisements
Advertisements
प्रश्न
उत्तर
log3 [log2 (log3x)] = 1
∴ log2 (log3x) = 31 = 3
∴ log3x = 23 = 8
∴ x = 38 = 6561.
APPEARS IN
संबंधित प्रश्न
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(c) whether f(xy) = f(x) : f(y) holds
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.
If f(x) = (x − a)2 (x − b)2, find f(a + b).
If \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.
If f(x) = cos (log x), then the value of f(x2) f(y2) −
If f : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for } - 2 \leq x \leq 0 \\ x - 1, & \text{ for } 0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =
The domain of definition of \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is
The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is
If f(m) = m2 − 3m + 1, find f(−3)
If ƒ(m) = m2 − 3m + 1, find f(x + 1)
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(3)
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.
Check if the relation given by the equation represents y as function of x:
2x + 3y = 12
Check if the relation given by the equation represents y as function of x:
x + y2 = 9
If f(m) = m2 − 3m + 1, find f(−3)
Find the domain and range of the follwoing function.
h(x) = `sqrt(x + 5)/(5 + x)`
Express the area A of a square as a function of its side s
Express the area A of a square as a function of its perimeter P
Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?
Express the following exponential equation in logarithmic form
10−2 = 0.01
Express the following logarithmic equation in exponential form
`log_(1/2) (8)` = – 3
Express the following logarithmic equation in exponential form
ln e = 1
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
Select the correct answer from given alternatives.
If f(x) =`1/(1 - x)`, then f{f[f(x)]} is
Answer the following:
Find x, if x = 33log32
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(x - x^2) + sqrt(5 - x)`
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______
If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.
Domain of `sqrt(a^2 - x^2) (a > 0)` is ______.
The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.
Which of the following functions is NOT one-one?
If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.