मराठी

The Domain of Definition of F ( X ) = √ X + 3 ( 2 − X ) ( X − 5 ) is (A) (−∞, −3] ∪ (2, 5) (B) (−∞, −3) ∪ (2, 5) (C) (−∞, −3) ∪ [2, 5] (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

पर्याय

  • (a) (−∞, −3] ∪ (2, 5)

  • (b) (−∞, −3) ∪ (2, 5)

  • (c) (−∞, −3) ∪ [2, 5]

  • (d) None of these

     
MCQ

उत्तर

(a) (−∞, −3] ∪ (2, 5) 

\[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\]

\[ \text{ For f(x) to be defined ,}  \]

\[\left( 2 - x \right)\left( x - 5 \right) \neq 0\]

\[ \Rightarrow x \neq 2, 5 . . . . (1)\]

\[\text{ Also } , \frac{\left( x + 3 \right)}{\left( 2 - x \right)\left( x - 5 \right)} \geq 0\]

\[ \Rightarrow \frac{\left( x + 3 \right)\left( 2 - x \right)\left( x - 5 \right)}{\left( 2 - x \right)^2 \left( x - 5 \right)^2} \geq 0\]

\[ \Rightarrow \left( x + 3 \right)\left( x - 2 \right)\left( x - 5 \right) \leq 0\]

\[ \Rightarrow x \in ( - \infty , - 3] \cup (2, 5) . . . . (2)\]

\[\text{ From (1) and (2),}  \]

\[x \in ( - \infty , - 3] \cup (2, 5)\]

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 32 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Write the range of the real function f(x) = |x|.

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Express the area A of a square as a function of its side s


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

10−2 = 0.01


Find the domain of f(x) = ln (x − 5)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Find x, if x = 33log32  


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×