हिंदी

The Domain of Definition of F ( X ) = √ X + 3 ( 2 − X ) ( X − 5 ) is (A) (−∞, −3] ∪ (2, 5) (B) (−∞, −3) ∪ (2, 5) (C) (−∞, −3) ∪ [2, 5] (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

विकल्प

  • (a) (−∞, −3] ∪ (2, 5)

  • (b) (−∞, −3) ∪ (2, 5)

  • (c) (−∞, −3) ∪ [2, 5]

  • (d) None of these

     
MCQ

उत्तर

(a) (−∞, −3] ∪ (2, 5) 

\[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\]

\[ \text{ For f(x) to be defined ,}  \]

\[\left( 2 - x \right)\left( x - 5 \right) \neq 0\]

\[ \Rightarrow x \neq 2, 5 . . . . (1)\]

\[\text{ Also } , \frac{\left( x + 3 \right)}{\left( 2 - x \right)\left( x - 5 \right)} \geq 0\]

\[ \Rightarrow \frac{\left( x + 3 \right)\left( 2 - x \right)\left( x - 5 \right)}{\left( 2 - x \right)^2 \left( x - 5 \right)^2} \geq 0\]

\[ \Rightarrow \left( x + 3 \right)\left( x - 2 \right)\left( x - 5 \right) \leq 0\]

\[ \Rightarrow x \in ( - \infty , - 3] \cup (2, 5) . . . . (2)\]

\[\text{ From (1) and (2),}  \]

\[x \in ( - \infty , - 3] \cup (2, 5)\]

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 32 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Define a function as a correspondence between two sets.

 

What is the fundamental difference between a relation and a function? Is every relation a function?


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find f(− x)


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Prove that `"b"^(log_"b""a"` = a


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


Domain of function f(x) = cos–1 6x is ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×