हिंदी

The Range of the Function F ( X ) = X | X | Is(A) R − {0} (B) R − {−1, 1} (C) {−1, 1} (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is

विकल्प

  • (a) R − {0}

  • (b) R − {−1, 1}

  • (c) {−1, 1}

  • (d) None of these

     
MCQ

उत्तर

(c) {−1, 1}

\[f\left( x \right) = \frac{x}{\left| x \right|}\]

\[\text{ Let y}  = \frac{x}{\left| x \right|}\]
\[\text{ For } x > 0, \left| x \right| = x\]
\[ \Rightarrow y = \frac{x}{x} = 1\]
\[\text{ For }  x < 0, = - x\]
\[ \Rightarrow y = \frac{x}{- x} = - 1\]
\[\text{ Thus, range of f(x) is } { - 1, 1} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 40 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the range of the real function f(x) = |x|.

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

If f(m) = m2 − 3m + 1, find f(− x)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find f(x + 1)


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Find the domain of f(x) = log10 (x2 − 5x + 6)


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the domain of the following function.

f(x) = x!


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the range of the following functions given by f(x) = |x − 3|


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×