हिंदी

If F(X) = Loge (1 − X) and G(X) = [X], Then Determine Function: (Iv) G F Also, Find (F + G) (−1), (Fg) (0), ( F G ) ( 1 2 ) , ( G F ) ( 1 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

उत्तर

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(iv) Given:
f(x) = loge (1 − x)

\[\Rightarrow \frac{1}{f\left( x \right)} = \frac{1}{\log_e \left( 1 - x \right)}\]
\[\frac{1}{f\left( x \right)}\]   is defined if loge( 1 -x) is defined and loge(1 – x) ≠ 0.
⇒ (1 - x) > 0 and (1 - x) ≠ 0
⇒ x < 1 and x ≠ 0
⇒ x ∈ ( -∞, 0)∪ (0, 1)
Thus,
\[\text{ domain } \left( \frac{g}{f} \right) = \left( - \infty , 0 \right) \cup \left( 0, 1 \right)\]  = ( - ∞, 1)  .
\[\frac{g}{f}: \left( - \infty , 0 \right) \cup \left( 0, 1 \right) \to \text{ R defined by } \left( \frac{g}{f} \right)\left( x \right) = \frac{g\left( x \right)}{f\left( x \right)} = \frac{\left[ x \right]}{\log_e \left( 1 - x \right)}\]
(f + g)( -1) = f(-1) + g( -1)
 = loge{1 – (-1)}+ [ -1]
= loge  2 – 1
Hence, (f + g)( -1) = loge  2 – 1
(fg)(0) = loge ( 1 – 0) × [0] = 0
\[\left( \frac{f}{g} \right)\left( \frac{1}{2} \right) = \text{ does not exist}  . \]
\[\left( \frac{g}{f} \right)\left( \frac{1}{2} \right) = \frac{\left[ \frac{1}{2} \right]}{\log_e \left( 1 - \frac{1}{2} \right)} = 0\]
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.4 | Q 5.4 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×