हिंदी

Find the domain and range of the following function. g(x) = x+4x-2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`

योग

उत्तर

g(x) = `(x + 4)/(x - 2)`

g(x) is not defined only for x = 2

∴ Domain = {x/x ∈ R, x ≠ 2} = R – {2}

Let y = `(x + 4)/(x - 2)`

∴ xy – 2y = x + 4

∴ xy – x = 2y + 4

∴ x(y – 1) = 2y + 4

∴ x = `(2y + 4)/(y - 1)`

If y = 1, we cannot find x such that g(x) = 1

∴ Range = {y/y ∈ R, y ≠ 1} = R – {1}

∴ Domain = {x/x ∈ R, x ≠ 2} = R – {2}

Range = {y/y ∈ R, y ≠ 1} = R – {1}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Exercise 6.1 [पृष्ठ ११८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Exercise 6.1 | Q 8. (b) | पृष्ठ ११८

संबंधित प्रश्न

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Which of the following are functions?


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

If f(m) = m2 − 3m + 1, find f(0)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(−3)


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the area A of circle as a function of its radius r


Express the following logarithmic equation in exponential form

ln 1 = 0


Prove that logbm a = `1/"m" log_"b""a"`


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


The domain of the function f(x) = `sqrtx` is ______.


If f(x) = 5x - 3, then f-1(x) is ______ 


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×