हिंदी

If f, g and h are real functions defined by f ( x ) = √ x + 1 , g ( x ) = 1 x and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0). - Mathematics

Advertisements
Advertisements

प्रश्न

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

उत्तर

Given:

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\text{ and } h\left( x \right) = 2 x^3 - 3\]
Clearly, f (x) is defined for x + 1 ≥ 0 .
⇒ x ≥-1
⇒ x ∈ [-1, ∞]
Thus, domain ( f ) = [-1, ∞] .
Clearly, g (x) is defined for x ≠ 0 .
⇒ x ∈ R – { 0} and h(x) is defined for all x such that  x ∈ R .
Thus,
domain ( ) ∩ domain (g) ∩ domain (h) = [ -1, ∞] – { 0}.
Hence,
(2f + g – h) : [ -1, ∞] – { 0} → R is given by:
(2f + g – h)(x) = 2f (x) + g (x) -h (x)
\[= 2\sqrt{x + 1} + \frac{1}{x} - 2 x^2 + 3\]
\[(2f + g - h)(1) = 2\sqrt{2} + 1 - 2 + 3 = 2\sqrt{2} + 4 - 2 = 2\sqrt{2} + 2\]

(2f + g – h) (0) does not exist because 0  does not lie in the domain x ∈[ - 1, ∞] – {0}.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.4 | Q 6 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


Which one of the following is not a function?


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

If f(m) = m2 − 3m + 1, find f(0)


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Find the domain of f(x) = log10 (x2 − 5x + 6)


Prove that logbm a = `1/"m" log_"b""a"`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


If f(x) = 5x - 3, then f-1(x) is ______ 


Find the range of the following functions given by `|x - 4|/(x - 4)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×