हिंदी

If F : R → R and G : R → R Are Defined by F(X) = 2x + 3 and G(X) = X2 + 7, Then the Values of X Such that G(F(X)) = 8 Are (A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2(A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2 - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are

विकल्प

  • (a) 1, 2

  • (b) −1, 2

  • (c) −1, −2

  • (d) 1, −2

     
MCQ

उत्तर

(c) −1, −2
f(x) = 2x + 3 and g(x) = x2 + 7

\[g(f(x)) = 8\]

\[ \Rightarrow \left( f(x) \right)^2 + 7 = 8\]

\[ \Rightarrow (2x + 3 )^2 + 7 = 8\]

\[ \Rightarrow x^2 + 3x + 2 = 0\]

\[ \Rightarrow (x + 2)(x + 1) = 0\]

\[ \Rightarrow x = - 1, - 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 23 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Write the range of the real function f(x) = |x|.

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


The domain of definition of the function f(x) = log |x| is


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Express the area A of circle as a function of its radius r


Express the following exponential equation in logarithmic form

25 = 32


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Domain of function f(x) = cos–1 6x is ______.


Find the domain of the following function.

f(x) = [x] + x


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×