हिंदी

F ( X ) = ⎧ ⎨ ⎩ 3 X − 2 , X < 0 ; 1 , X = 0 ; 4 X + 1 , X > 0 . Find: F(1), F(−1), F(0) and F(2). - Mathematics

Advertisements
Advertisements

प्रश्न

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 

उत्तर

(1) = 4 × 1 + 1 = 5          [By using f (x) = 4x + 1, x > 0]
f ( -1) = 3 × (-1) -2          [By using (x) = 3x -2, x < 0]
        = -3-2=-5f (0) = 1             [By using f (x) = 1, x = 0]
f (2) = 4 × 2 + 1                 [By using f (x) = 4x + 1, x > 0]
        = 9
Hence,
(1) = 5, f (- 1) = -5, f (0) = 1 and f (2) = 9. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.1 | Q 5 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The range of the function f(x) = |x − 1| is


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×