हिंदी

Write the Range of the Function F(X) = Ex−[X], X ∈ R. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the range of the function f(x) = ex[x]x ∈ R.

 

उत्तर

f(x) = ex[x]x ∈ R

\[\text { We know that x - [x] = {x}, which is the fractional part of any number x .}  \]
\[\text{ Thus} , f(x) = e^{{x}} \]
\[\text{ Also} , 0 \leq {x} < 1\]
\[ \Rightarrow e^0 \leq e^{{x}} < e^1 \]
\[ \Rightarrow 1 \leq f(x) < e\]
\[\text{ Thus range of f(x) is }  [1, e) . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.5 | Q 6 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f(m) = m2 − 3m + 1, find f(0)


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

54° = 1


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


Find the range of the following functions given by `|x - 4|/(x - 4)`


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×