हिंदी

The Range of the Function F ( X ) = X 2 − X X 2 + 2 X Is(A) R (B) R − {1} (C) R − {−1/2, 1} (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

विकल्प

  • (a) R

  • (b) R − {1}

  • (c) R − {−1/2, 1}

  • (d) None of these

     
MCQ

उत्तर

(c) R − {−1/2, 1}

\[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]
\[\text{ Let }  y = \frac{x^2 - x}{x^2 + 2x} \left[\text{  Also,}  x \neq 0 \right]\]
\[ \Rightarrow y = \frac{x(x - 1)}{x(x + 2)}\]
\[ \Rightarrow y = \frac{(x - 1)}{(x + 2)}\]
\[ \Rightarrow xy + 2y = x - 1\]
\[ \Rightarrow x = \frac{2y + 1}{1 - y}\]
\[\text{ Here } , 1 - y \neq 0 . \]
\[\text{ or } , y \neq 1 . \]
\[\text{ Also } , x \neq 0\]
\[ \Rightarrow \frac{2y + 1}{1 - y} \neq 0\]
\[ \Rightarrow y \neq - \frac{1}{2}\]
\[\text{ Thus, range  } (f) = R - { - \frac{1}{2}, 1} . \]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 16 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Express the following exponential equation in logarithmic form

e–x = 6


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that alogcb = blogca


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×