हिंदी

Check if the following relation is a function. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Check if the following relation is a function.

एक पंक्ति में उत्तर

उत्तर

It is not a function because – 2 ∈ A is not related to any element of the set B.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Exercise 6.1 [पृष्ठ ११८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Exercise 6.1 | Q 1. (c) | पृष्ठ ११८

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


What is the fundamental difference between a relation and a function? Is every relation a function?


\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


The domain of the function f(x) = `sqrtx` is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×