हिंदी

If F ( X ) = 64 X 3 + 1 X 3 and α, β Are the Roots of 4 X + 1 X = 3 . Then, (A) F(α) = F(β) = −9 (B) F(α) = F(β) = 63 (C) F(α) ≠ F(β) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

विकल्प

  • (a) f(α) = f(β) = −9

  • (b) f(α) = f(β) = 63

  • (c) f(α) ≠ f(β)

  • (d) none of these

     
MCQ

उत्तर

(a) f(α) = f(β) = −9  

Given:\[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\]

\[\Rightarrow f\left( x \right) = \left( 4x + \frac{1}{x} \right)\left( 16 x^2 + \frac{1}{x^2} - 4 \right)\]

\[\Rightarrow f\left( x \right) = \left( 4x + \frac{1}{x} \right)\left( \left( 4x + \frac{1}{x} \right)^2 - 12 \right)\]

\[\Rightarrow f\left( \alpha \right) = \left( 4\alpha + \frac{1}{\alpha} \right)\left( \left( 4\alpha + \frac{1}{\alpha} \right)^2 - 12 \right)\text{ and } f\left( \beta \right) = \left( 4\beta + \frac{1}{\beta} \right)\left( \left( 4\beta + \frac{1}{\beta} \right)^2 - 12 \right)\] Since α and β are the roots of \[4x + \frac{1}{x} = 3\] \[4\alpha + \frac{1}{\alpha} = 3 \text{ and } 4\beta + \frac{1}{\beta} = 3\] \[\Rightarrow f\left( \alpha \right) = 3\left( \left( 3 \right)^2 - 12 \right) = - 9\]  and \[f\left( \beta \right) = 3\left( \left( 3 \right)^2 - 12 \right) = - 9\] \[\Rightarrow f\left( \alpha \right) = f\left( \beta \right) = - 9\]

 
 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 27 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(m) = m2 − 3m + 1, find f(x + 1)


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of a square as a function of its perimeter P


Express the area A of circle as a function of its circumference C.


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Find the domain of f(x) = log10 (x2 − 5x + 6)


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×