हिंदी

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Vi) 2 F − √ 5 G - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

उत्तर

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(vi) \[2f - \sqrt{5}g: \left[ - 1, 3 \right] \to \text{ R is given by }  \left( 2f - \sqrt{5}g \right)\left( x \right) = 2\sqrt{x + 1} - \sqrt{5}\left( \sqrt{9 - x^2} \right)\] \[= 2\sqrt{x + 1} - \sqrt{45 - 5 x^2}\]
 
 
 


 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.4 | Q 4.6 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the function f(x) = log3+x (x2 - 1) is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×