English

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Vi) 2 F − √ 5 G - Mathematics

Advertisements
Advertisements

Question

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Solution

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(vi) \[2f - \sqrt{5}g: \left[ - 1, 3 \right] \to \text{ R is given by }  \left( 2f - \sqrt{5}g \right)\left( x \right) = 2\sqrt{x + 1} - \sqrt{5}\left( \sqrt{9 - x^2} \right)\] \[= 2\sqrt{x + 1} - \sqrt{45 - 5 x^2}\]
 
 
 


 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 4.6 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


What is the fundamental difference between a relation and a function? Is every relation a function?


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

Check if the following relation is function:


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


If f(m) = m2 − 3m + 1, find f(0)


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×