English

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Vii) F2 + 7f - Mathematics

Advertisements
Advertisements

Question

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f

Solution

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(vii) \[f^2 + 7f: \left[ - 1, \infty \right] \to \text{ R is given by }  \left( f^2 + 7f \right)\left( x \right) = f^2 \left( x \right) + 7f\left( x \right)\]            {Since domain(f) = [ - 1, ∞]}
\[= \left( \sqrt{x + 1} \right)^2 + 7\left( \sqrt{x + 1} \right) = x + 1 + 7\sqrt{x + 1}\]
 
 


 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 4.7 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


The range of the function f(x) = |x − 1| is


If f(m) = m2 − 3m + 1, find f(− x)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Prove that alogcb = blogca


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×