English

If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3) - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)

Sum

Solution

f(x) = 3x + 5, g(x) = 6x – 1

(fg) (3) = f(3) g(3)

= [3 (3) + 5] [6 (3) – 1]

= (14) (17)

 = 238

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 127]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×