English

If F : Q → Q is Defined as F(X) = X2, Then F−1 (9) is Equal to (A) 3 (B) −3 (C) {−3, 3} (D) ϕ - Mathematics

Advertisements
Advertisements

Question

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to

Options

  • (a) 3

  • (b) −3

  • (c) {−3, 3}

  • (d) ϕ

     
MCQ

Solution

(c) {−3, 3}
If f : A → B, such that y ∈ B, then 

\[f^{- 1}\] { }={x ∈ Af (x) = y}.

In other words, 

\[f^{- 1}\] { y} is the set of pre-images of  y.
Let
\[f^{- 1}\]  9} = x
Then, f (x) = 9
 x2  = 9
⇒ x = ± 3
∴ \[f^{- 1}\]  {9} = {- 3, 3}.
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 2 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The domain of definition of the function f(x) = log |x| is


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of circle as a function of its diameter d


lf f(x) = 3(4x+1), find f(– 3)


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


Range of f(x) = `1/(1 - 2 cosx)` is ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×