हिंदी

If F : Q → Q is Defined as F(X) = X2, Then F−1 (9) is Equal to (A) 3 (B) −3 (C) {−3, 3} (D) ϕ - Mathematics

Advertisements
Advertisements

प्रश्न

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to

विकल्प

  • (a) 3

  • (b) −3

  • (c) {−3, 3}

  • (d) ϕ

     
MCQ

उत्तर

(c) {−3, 3}
If f : A → B, such that y ∈ B, then 

\[f^{- 1}\] { }={x ∈ Af (x) = y}.

In other words, 

\[f^{- 1}\] { y} is the set of pre-images of  y.
Let
\[f^{- 1}\]  9} = x
Then, f (x) = 9
 x2  = 9
⇒ x = ± 3
∴ \[f^{- 1}\]  {9} = {- 3, 3}.
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 2 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(0)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


Domain of function f(x) = cos–1 6x is ______.


Find the domain of the following function.

f(x) = [x] + x


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×