हिंदी

The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.

विकल्प

  • `{- 1, 4/3}`

  • `[-1, 4/3]`

  • `(-1, 4/3)`

  • `[-1, 4/3)`

MCQ
रिक्त स्थान भरें

उत्तर

The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is `{- 1, 4/3}`.

Explanation:

Given that: f(x) = 3x2 – 1 and g(x) = 3 + x

f(x) = g(x)

⇒ 3x2 – 1 = 3 + x

⇒ 3x2 – x – 4 = 0

⇒ 3x2 – 4x + 3x – 4 = 0

⇒ x(3x – 4) + 1(3x – 4) = 0

⇒ (x + 1)(3x – 4) = 0

⇒ x + 1 = 0 or 3x – 4 = 0

⇒ x = – 1 or x = `4/3`

∴ Domain = `{-1, 4/3}`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations and Functions - Exercise [पृष्ठ ३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 2 Relations and Functions
Exercise | Q 35 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


If f(m) = m2 − 3m + 1, find f(− x)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following logarithmic equation in exponential form

ln 1 = 0


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


The domain of the function f(x) = `sqrtx` is ______.


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×