हिंदी

If F ( X ) = X 3 − 1 X 3 , Show that F ( X ) + F ( 1 X ) = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 

उत्तर

Given:

\[f\left( x \right) = x^3 - \frac{1}{x^3}\]    ...(i)
Thus,
\[f\left( \frac{1}{x} \right) = \left( \frac{1}{x} \right)^3 - \frac{1}{\left( \frac{1}{x} \right)^3}\] \[= \frac{1}{x^3} - \frac{1}{\frac{1}{x^3}}\]
\[\therefore f\left( \frac{1}{x} \right) = \frac{1}{x^3} - x^3\]  ...(ii) 
\[f\left( x \right) + f\left( \frac{1}{x} \right) = \left( x^3 - \frac{1}{x^3} \right) + \left( \frac{1}{x^3} - x^3 \right)\]
\[= x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3 = 0\] 
Hence,
\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 7 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find f(− x)


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Find the domain of the following function.

f(x) = x!


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the range of the following functions given by f(x) = |x − 3|


Let f(x) = `sqrt(1 + x^2)`, then ______.


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×