हिंदी

If F(X) = Cos (Log X), Then the Value of F(X2) F(Y2) −1 2 { F ( X 2 Y 2 ) + F ( X 2 Y 2 ) } Is(A) −2 (B) −1 (C) 1/2 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

विकल्प

  • (a) −2

  • (b) −1

  • (c) 1/2

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

Given: \[f\left( x \right) = \cos\left( \log x \right)\]

\[\Rightarrow f\left( x^2 \right) = \cos\left( \log\left( x^2 \right) \right)\]
\[ \Rightarrow f\left( x^2 \right) = \cos\left( 2\log\left( x \right) \right)\]

Similarly,

\[f\left( y^2 \right) = \cos\left( 2\log\left( y \right) \right)\]
Now,
 
\[f\left( \frac{x^2}{y^2} \right) = \cos\left( \log\left( \frac{x^2}{y^2} \right) \right) = \cos\left( \log x^2 - \log y^2 \right)\]and
\[f\left( x^2 y^2 \right) = \cos\left( \log x^2 y^2 \right) = \cos\left( \log x^2 + \log y^2 \right)\]
\[\Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = \cos\left( \left( 2\log x - 2\log y \right) \right) + \cos\left( \left( 2\log x + 2\log y \right) \right)\]
\[ \Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = 2\cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[ \Rightarrow \frac{1}{2}\left[ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right] = \cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[\Rightarrow f\left( x^2 \right)f\left( y^2 \right) - \frac{1}{2}\left\{ f\left( x^2 y^2 \right) + f\left( \frac{x^2}{y^2} \right) \right\} = \cos\left( 2\log x \right)\cos\left( 2\log y \right) - \cos\left( 2\log x \right)\cos\left( 2\log y \right) = 0\]
 
 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 4 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The range of the function f(x) = |x − 1| is


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(m) = m2 − 3m + 1, find f(−3)


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Express the area A of circle as a function of its diameter d


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Express the following logarithmic equation in exponential form

ln 1 = 0


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The domain of the function f(x) = log3+x (x2 - 1) is ______.


Find the range of the following functions given by `|x - 4|/(x - 4)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×