हिंदी

Write the Domain and Range of F ( X ) = √ X − [ X ] . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

उत्तर

\[f\left( x \right) = \sqrt{x - \left[ x \right]}\]
\[\text{ Since  f(x) is defined for all values of }  x, x \in R . \]
\[\text{ Or dom }  (f(x)) = R\]
\[\text{ Since, x - [x] = {x}, which is the fractional part of any real number } x, \]
\[ f(x) = \sqrt{{x}} . . . . . (1)\]
\[\text{ We know that }  \]
\[0 \leq {x} < 1\]
\[ \Rightarrow \sqrt{0} \leq \sqrt{{x}} < \sqrt{1}\]
\[ \Rightarrow 0 \leq f(x) < 1 { \text{ from } (1)}\]
\[\text{ Thus, range of f(x) is } [0, 1) . \]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.5 | Q 13 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Which one of the following is not a function?


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find f(− x)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Prove that `"b"^(log_"b""a"` = a


Prove that logbm a = `1/"m" log_"b""a"`


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function y = `1/(2 - sin3x)` is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×