हिंदी

The Domain of Definition of the Function F ( X ) = √ X − 1 + √ 3 − X is (A) [1, ∞) (B) (−∞, 3) (C) (1, 3) (D) [1, 3] - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

विकल्प

  • (a) [1, ∞)

  • (b) (−∞, 3)

  • (c) (1, 3)

  • (d) [1, 3]

     
MCQ

उत्तर

(d) [1, 3]

\[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\]

\[\text{ For f(x) to be defined, } \]

\[\left( x - 1 \right) \geq 0\]

\[ \Rightarrow x \geq 1 . . . (1)\]

\[\text{ and  } \left( 3 - x \right) \geq 0\]

\[ \Rightarrow 3 \leq x . . . (2)\]

\[\text{ From (1) and (2), } \]

\[x \in [1, 3]\]

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 34 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

231 = 23


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Prove that alogcb = blogca


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


If f(x) = 5x - 3, then f-1(x) is ______ 


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Find the range of the following functions given by f(x) = |x − 3|


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×