English

The Domain of Definition of the Function F ( X ) = √ X − 1 + √ 3 − X is (A) [1, ∞) (B) (−∞, 3) (C) (1, 3) (D) [1, 3] - Mathematics

Advertisements
Advertisements

Question

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

Options

  • (a) [1, ∞)

  • (b) (−∞, 3)

  • (c) (1, 3)

  • (d) [1, 3]

     
MCQ

Solution

(d) [1, 3]

\[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\]

\[\text{ For f(x) to be defined, } \]

\[\left( x - 1 \right) \geq 0\]

\[ \Rightarrow x \geq 1 . . . (1)\]

\[\text{ and  } \left( 3 - x \right) \geq 0\]

\[ \Rightarrow 3 \leq x . . . (2)\]

\[\text{ From (1) and (2), } \]

\[x \in [1, 3]\]

 

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 34 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Which one of the following is not a function?


Let f(x) = |x − 1|. Then,


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


If f(m) = m2 − 3m + 1, find f(−3)


Prove that `"b"^(log_"b""a"` = a


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


If f(x) = 5x - 3, then f-1(x) is ______ 


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×