English

If 2f (X) − 3 F ( 1 X ) = X 2 (X ≠ 0), Then F(2) is Equal to (A) − 7 4 (B) 5 2(C) −1 (D) None of These - Mathematics

Advertisements
Advertisements

Question

If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Options

  • (a)  \[- \frac{7}{4}\]

     

  • (b)  \[\frac{5}{2}\]

     

  • (c) −1

  • (d) None of these

     
MCQ

Solution

(a)  \[- \frac{7}{4}\]

2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\]  (x ≠ 0)                  ....(1)

\[\text{ Replacing x by } \frac{1}{x}: \]
\[2f\left( \frac{1}{x} \right) - 3f(x) = \frac{1}{x^2} . . . (2) \]
\[\text{ Solving equations (1) & (2) } \]
\[ - 5f (x) = \frac{3} {x^2} + 2 x^2 \]
\[ \Rightarrow f(x) = \frac{- 1}{5} \left( \frac{3}{x^2} + 2 x^2 \right)\]
\[\text{ Thus } , f(2) = \frac{- 1}{5} \left( \frac{3}{4} + 2 \times 4 \right)\]
\[ = \frac{- 1}{5} \left( \frac{3 + 32}{4} \right) \]
\[ = \frac{- 7}{4}\]

 
 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 14 | Page 43

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(m) = m2 − 3m + 1, find f(x + 1)


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Prove that logbm a = `1/"m" log_"b""a"`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×