Advertisements
Advertisements
Question
Solve for x.
x + log10 (1 + 2x) = x log10 5 + log10 6
Solution
x + log10 (1 + 2x) = x log10 5 + log10 6
∴ x log10 10 + log10 (1 + 2x) = x log10 5 + log10 6 ...[∵ loga a = 1]
∴ log10 10x + log10 (1 + 2x) = log10 5x + log10 6
∴ log10 [10x (1 + 2x)] = log10 (6 × 5x)
∴ 10x (1 + 2x) = 6 × 5x
∴ 2x × 5x (1 + 2x) = 6 × 5x
∴ 2x (1 + 2x) = 6
Let 2x = a
∴ a.(1 + a) = 6
∴ a + a2 = 6
∴ a2 + a – 6 = 0
∴ (a + 3)(a – 2) = 0
∴ a + 3 = 0 or a – 2 = 0
∴ a = – 3 or a = 2
Since 2x = – 3, which is not possible
∴ 2x = 2 = 21
∴ x = 1
APPEARS IN
RELATED QUESTIONS
Find the domain of the function f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`
Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.
Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:
(a) range of f, i.e. f(A).
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]
The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]
Show that f is a function and g is not a function.
If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(ii) fg
Let f(x) = |x − 1|. Then,
Which of the following are functions?
If \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =
The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is
The domain of definition of \[f\left( x \right) = \sqrt{4x - x^2}\] is
The range of the function f(x) = |x − 1| is
The range of \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is
Check if the following relation is function:
If f(m) = m2 − 3m + 1, find f(− x)
If f(x) = 3x + a and f(1) = 7 find a and f(4).
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(2)
Check if the relation given by the equation represents y as function of x:
3x − 6 = 21
Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x
If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b
Find the domain and range of the following function.
f(x) = 7x2 + 4x − 1
Find the domain and range of the following function.
f(x) = `sqrt((x - 3)/(7 - x))`
Find the domain and range of the following function.
f(x) = `sqrt(16 - x^2)`
Check the injectivity and surjectivity of the following function.
f : N → N given by f(x) = x3
Express the following exponential equation in logarithmic form
e–x = 6
Write the following expression as a single logarithm.
5 log x + 7 log y − log z
Write the following expression as a single logarithm.
ln (x + 2) + ln (x − 2) − 3 ln (x + 5)
If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain
Answer the following:
If b2 = ac. prove that, log a + log c = 2 log b
Answer the following:
Find the domain of the following function.
f(x) = x!
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find a and b
The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.
Find the domain of the following function.
f(x) = `x/(x^2 + 3x + 2)`
Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`
If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.
The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.
Let f(θ) = sin θ (sin θ + sin 3θ) then ______.
If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.