English

Which of the Following Are Functions? (A) {(X, Y) : Y2 = X, X, Y ∈ R} (B) {(X, Y) : Y = |X|, X, Y ∈ R} (C) {(X, Y) : X2 + Y2 = 1, X, Y ∈ R} (D) {(X, Y) : X2 − Y2 = 1, X, Y ∈ R} - Mathematics

Advertisements
Advertisements

Question

Which of the following are functions?

Options

  • (a) {(xy) : y2 = xxy ∈ R}

  • (b) {(xy) : y = |x|, xy ∈ R}

  • (c) {(xy) : x2 + y2 = 1, xy ∈ R}

  • (d) {(xy) : x2 − y2 = 1, xy ∈ R}

     
MCQ

Solution

(b) {(xy) : y = |x|, xy ∈ R}

For every value of ∈ R, there is a unique value y∈ R.
i.e. there is a unique image for all values of ∈ R.
Also, values of x occur only once in the ordered pairs.
Thus, it is a function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 8 | Page 43

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Which one of the following is not a function?


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Domain of function f(x) = cos–1 6x is ______.


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×