English

Let f and g be two real functions defined by f ( x ) = √ x + 1 and g ( x ) = √ 9 − x 2 . Then, describe function: (i) f + g - Mathematics

Advertisements
Advertisements

Question

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Solution

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(i) ( g ) : [ -1 , 3] → R is given by ( f + g ) (x) = (x) + g (x) = \[\sqrt{x + 1} + \sqrt{9 - x^2}\]
 


 
 
 
 
 


 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 4.1 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

e–x = 6


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


If f(x) = 5x - 3, then f-1(x) is ______ 


Find the domain of the following function.

f(x) = [x] + x


Find the range of the following functions given by `sqrt(16 - x^2)`


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×