English

If f(x) = {x2+3, x≤25x+7, x>2, then find f(0) - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)

Sum

Solution

f(x) = x2 + 3,    x ≤ 2
= 5x + 7,          x > 2
f(0) = 02 + 3
= 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

RELATED QUESTIONS

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


The domain of the function f(x) = `sqrtx` is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×