English

The Range of F ( X ) = 1 1 − 2 Cos X is (A) [1/3, 1] (B) [−1, 1/3] (C) (−∞, −1) ∪ [1/3, ∞) (D) [−1/3, 1] - Mathematics

Advertisements
Advertisements

Question

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 

Options

  • (a) [1/3, 1]    

  •   (b) [−1, 1/3]    

  •   (c) (−∞, −1) ∪ [1/3, ∞)   

  •    (d) [−1/3, 1]   

MCQ

Solution

We know that −1 ≤ cosx ≤ 1 for all x ∈ R.

Now, 

\[- 1 \leq \cos x \leq 1\]
\[ \Rightarrow - 1 \leq - \cos x \leq 1\]
\[ \Rightarrow - 2 \leq - 2\cos x \leq 2\]
\[ \Rightarrow - 1 \leq 1 - 2\cos x \leq 3 \left( \text{ Adding 1 to each term }  \right)\]

But,

\[\cos x \neq \frac{1}{2}\]
\[\Rightarrow 1 - 2\cos x \in \left[ - 1, 3 \right] - \left\{ 0 \right\}\]
\[ \Rightarrow \frac{1}{1 - 2\cos x} \in ( - \infty , - 1] \cup [\frac{1}{3}, \infty )\]
∴ Range of f(x) = (−∞, −1] ∪[ \[\frac{1}{3}\] 
 

Disclaimer: The range of the function does not matches with either of the given options. The range matches with option (c) if it is given as "(−∞, −1] ∪ [1/3, ∞)".

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 45 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Check if the following relation is function:


If f(m) = m2 − 3m + 1, find `f(1/2)`


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Express the area A of a square as a function of its perimeter P


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the range of the following functions given by f(x) = |x − 3|


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×