English

If F(X) = Loge (1 − X) and G(X) = [X], Then Determine Function: (Iv) G F Also, Find (F + G) (−1), (Fg) (0), ( F G ) ( 1 2 ) , ( G F ) ( 1 2 ) - Mathematics

Advertisements
Advertisements

Question

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Solution

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(iv) Given:
f(x) = loge (1 − x)

\[\Rightarrow \frac{1}{f\left( x \right)} = \frac{1}{\log_e \left( 1 - x \right)}\]
\[\frac{1}{f\left( x \right)}\]   is defined if loge( 1 -x) is defined and loge(1 – x) ≠ 0.
⇒ (1 - x) > 0 and (1 - x) ≠ 0
⇒ x < 1 and x ≠ 0
⇒ x ∈ ( -∞, 0)∪ (0, 1)
Thus,
\[\text{ domain } \left( \frac{g}{f} \right) = \left( - \infty , 0 \right) \cup \left( 0, 1 \right)\]  = ( - ∞, 1)  .
\[\frac{g}{f}: \left( - \infty , 0 \right) \cup \left( 0, 1 \right) \to \text{ R defined by } \left( \frac{g}{f} \right)\left( x \right) = \frac{g\left( x \right)}{f\left( x \right)} = \frac{\left[ x \right]}{\log_e \left( 1 - x \right)}\]
(f + g)( -1) = f(-1) + g( -1)
 = loge{1 – (-1)}+ [ -1]
= loge  2 – 1
Hence, (f + g)( -1) = loge  2 – 1
(fg)(0) = loge ( 1 – 0) × [0] = 0
\[\left( \frac{f}{g} \right)\left( \frac{1}{2} \right) = \text{ does not exist}  . \]
\[\left( \frac{g}{f} \right)\left( \frac{1}{2} \right) = \frac{\left[ \frac{1}{2} \right]}{\log_e \left( 1 - \frac{1}{2} \right)} = 0\]
 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 5.4 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Prove that `"b"^(log_"b""a"` = a


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×