English

Express the following exponential equation in logarithmic form 25 = 32 - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following exponential equation in logarithmic form

25 = 32

Sum

Solution

25 = 32

∴ 5 = log2 32   …[By definition of logarithm]

i.e. log2 32 = 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.1 [Page 119]

RELATED QUESTIONS

Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the range of the real function f(x) = |x|.

 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

Check if the following relation is function:


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the area A of circle as a function of its diameter d


Express the area A of circle as a function of its circumference C.


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Prove that alogcb = blogca


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×