English

Find the domain and range of the function f(x) = 1x-5 - Mathematics

Advertisements
Advertisements

Question

Find the domain and range of the function f(x) = `1/sqrt(x - 5)`

Sum

Solution

Given that: f(x) = `1/sqrt(x - 5)`

Here, it is clear that f(x) is real when x – 5 > 0

⇒ x > 5

Hence, the domain = `(5, oo)`

Now to find the range put

f(x) = y = `1/sqrt(x - 5)`

⇒ `sqrt(x - 5) = 1/y`

⇒ `x - 5 = 1/y^2`

⇒ x = `1/y^2 + 5`

For x ∈ `(5, oo)`, y ∈ R+

Hence, the range of f = R+. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise [Page 30]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise | Q 22 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find f(− x)


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Prove that logbm a = `1/"m" log_"b""a"`


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the range of the following functions given by f(x) = |x − 3|


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×