English

The Domain of Definition of F ( X ) = √ X − 3 − 2 √ X − 4 − √ X − 3 + 2 √ X − 4 is (A) [4, ∞) (B) (−∞, 4] (C) (4, ∞) (D) (−∞, 4) - Mathematics

Advertisements
Advertisements

Question

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 

Options

  • (a) [4, ∞)

  • (b) (−∞, 4]

  • (c) (4, ∞)

  • (d) (−∞, 4)

     
MCQ

Solution

(a) [4, ∞)  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\]

\[\text{ For f(x) to be defined } , x - 4 \geq 0\]

\[ \Rightarrow x - 4 \geq 0\]

\[ \Rightarrow x \geq 4 . . . . (1)\]

\[\text{ Also} , x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 \geq 2\sqrt{x - 4}\]

\[ \Rightarrow (x - 3 )^2 \geq \left( 2\sqrt{x - 4} \right)^2 \]

\[ \Rightarrow x^2 + 9 - 6x \geq 4\left( x - 4 \right)\]

\[ \Rightarrow x^2 - 10x + 25 \geq 0\]

\[ \Rightarrow (x - 5) {}^2 \geq 0, \text{ which is always true .}  \]

\[\text{ Similarly,}  x - 3 + 2\sqrt{x - 4} \geq 0 \text{ is always true } . \]

\[\text{ Thus, dom } (f(x)) = [4, \infty )\]

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 38 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


The range of f(x) = cos [x], for π/2 < x < π/2 is


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function f(x) = |x − 1| is


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find `f(1/2)`


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×