English

The Domain of the Function F ( X ) = √ 5 | X | − X 2 − 6 Is(A) (−3, − 2) ∪ (2, 3) (B) [−3, − 2) ∪ [2, 3) (C) [−3, − 2] ∪ [2, 3] (D) None of These - Mathematics

Advertisements
Advertisements

Question

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

Options

  • (a) (−3, − 2) ∪ (2, 3)

  • (b) [−3, − 2) ∪ [2, 3)

  • (c) [−3, − 2] ∪ [2, 3]

  • (d) None of these

     
MCQ

Solution

(c) [−3, − 2] ∪ [2, 3]

\[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\]

\[\text{ For f(x) to be defined,}  5\left| x \right| - x^2 - 6 \geq 0\]
\[ \Rightarrow 5\left| x \right| - x^2 - 6 \geq 0\]
\[ \Rightarrow x {}^2 - 5\left| x \right| + 6 \leq 0\]
\[\text{ For }  x > 0, \left| x \right| = x\]
\[ \Rightarrow x {}^2 - 5x + 6 \leq 0\]
\[ \Rightarrow (x - 2)(x - 3) \leq 0\]
\[ \Rightarrow x \in [2, 3] . . . . . . . . (1)\]
\[\text{ [For }  x < 0, \left| x \right| = - x\]
\[ \Rightarrow x {}^2 + 5x + 6 \leq 0\]
\[ \Rightarrow (x + 2)(x + 3) \leq 0\]
\[ \Rightarrow x \in [ - 3, - 2] . . . . . . . (2)\]
\[\text{ From (1) and (2) } , \]
\[x \in [ - 3, - 2] \cup [2, 3] \]
\[\text{ or, dom } (f) = [ - 3, - 2] \cup [2, 3]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 39 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the area A of circle as a function of its diameter d


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Prove that `"b"^(log_"b""a"` = a


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function y = `1/(2 - sin3x)` is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×