हिंदी

The Domain of the Function F ( X ) = √ 5 | X | − X 2 − 6 Is(A) (−3, − 2) ∪ (2, 3) (B) [−3, − 2) ∪ [2, 3) (C) [−3, − 2] ∪ [2, 3] (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

विकल्प

  • (a) (−3, − 2) ∪ (2, 3)

  • (b) [−3, − 2) ∪ [2, 3)

  • (c) [−3, − 2] ∪ [2, 3]

  • (d) None of these

     
MCQ

उत्तर

(c) [−3, − 2] ∪ [2, 3]

\[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\]

\[\text{ For f(x) to be defined,}  5\left| x \right| - x^2 - 6 \geq 0\]
\[ \Rightarrow 5\left| x \right| - x^2 - 6 \geq 0\]
\[ \Rightarrow x {}^2 - 5\left| x \right| + 6 \leq 0\]
\[\text{ For }  x > 0, \left| x \right| = x\]
\[ \Rightarrow x {}^2 - 5x + 6 \leq 0\]
\[ \Rightarrow (x - 2)(x - 3) \leq 0\]
\[ \Rightarrow x \in [2, 3] . . . . . . . . (1)\]
\[\text{ [For }  x < 0, \left| x \right| = - x\]
\[ \Rightarrow x {}^2 + 5x + 6 \leq 0\]
\[ \Rightarrow (x + 2)(x + 3) \leq 0\]
\[ \Rightarrow x \in [ - 3, - 2] . . . . . . . (2)\]
\[\text{ From (1) and (2) } , \]
\[x \in [ - 3, - 2] \cup [2, 3] \]
\[\text{ or, dom } (f) = [ - 3, - 2] \cup [2, 3]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 39 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Express the area A of circle as a function of its radius r


Express the following exponential equation in logarithmic form

231 = 23


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Find the domain of f(x) = ln (x − 5)


Find the domain of f(x) = log10 (x2 − 5x + 6)


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

log2 x + log4 x + log16 x = `21/4`


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Let f(x) = `sqrt(1 + x^2)`, then ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×