हिंदी

If F ( X ) = X + 1 X − 1 , Show that F[F[(X)]] = X. - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 

उत्तर

Given:

\[f\left( x \right) = \frac{x + 1}{x - 1}\]

Therefore,

\[f\left[ f\left\{ \left( x \right) \right\} \right] = f\left( \frac{x + 1}{x - 1} \right)\]

\[= \frac{\left( \frac{x + 1}{x - 1} \right) + 1}{\left( \frac{x + 1}{x - 1} \right) - 1}\]
\[= \frac{\frac{x + 1 + x - 1}{x - 1}}{\frac{x + 1 - x + 1}{x - 1}} = \frac{\frac{2x}{x - 1}}{\frac{2}{x - 1}} = \frac{2x}{2} = x\]
Thus,
f {(x)}] = x
Hence proved.
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 5 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Write the range of the real function f(x) = |x|.

 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Which of the following are functions?


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The range of the function f(x) = |x − 1| is


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

ln e = 1


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Find x, if x = 33log32  


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×