हिंदी

If F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ X 2 , When X < 0 X , When 0 ≤ X < 1 1 X , When X ≥ 1 Find: (A) F(1/2), (B) F(−2), (C) F(1), (D) F ( √ 3 ) and (E) F ( √ − 3 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

उत्तर

Given:

\[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\] 

Now,
(a) \[f\left( \frac{1}{2} \right) = \frac{1}{2}\]         [ Using f (x) = x, 0 ≤ x < 1]

(b) f ( -2) = ( - 2)2 = 4  

(c) \[f\left( 1 \right) = \frac{1}{1} = 1\]
(d) \[f\left( \sqrt{3} \right) = \frac{1}{\sqrt{3}}\]
(e)  \[f\left( \sqrt{- 3} \right)\] Since x is not defined in R,
\[f\left( \sqrt{- 3} \right)\]  does not exist.
 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 6 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Write the range of the real function f(x) = |x|.

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

Check if the following relation is function:


Check if the following relation is function:


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×