मराठी

If F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ X 2 , When X < 0 X , When 0 ≤ X < 1 1 X , When X ≥ 1 Find: (A) F(1/2), (B) F(−2), (C) F(1), (D) F ( √ 3 ) and (E) F ( √ − 3 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

उत्तर

Given:

\[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\] 

Now,
(a) \[f\left( \frac{1}{2} \right) = \frac{1}{2}\]         [ Using f (x) = x, 0 ≤ x < 1]

(b) f ( -2) = ( - 2)2 = 4  

(c) \[f\left( 1 \right) = \frac{1}{1} = 1\]
(d) \[f\left( \sqrt{3} \right) = \frac{1}{\sqrt{3}}\]
(e)  \[f\left( \sqrt{- 3} \right)\] Since x is not defined in R,
\[f\left( \sqrt{- 3} \right)\]  does not exist.
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.2 | Q 6 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Check if the following relation is a function.


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following logarithmic equation in exponential form

log2 64 = 6


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


The range of the function y = `1/(2 - sin3x)` is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×