Advertisements
Advertisements
प्रश्न
Check the injectivity and surjectivity of the following function.
f : N → N given by f(x) = x2
उत्तर १
f : N → N given by f(x) = x2
Let f(x1) = f(x2), x1, x2 ∈ N
∴ x12 = x22
∴ x12 – x22 = 0
∴ `(x_1 - x_2) underbrace((x_1 + x_2))_("for" x_1 * x_2 ∈ "N")` = 0
∴ x1 = x2
∴ f is injective.
For every y = x2 ∈ N, there does not exist x ∈ N. Example: 7 ∈ N (codomain) for which there is no x in domain N such that x2 = 7
∴ f is not surjective.
उत्तर २
f: Z → Z given by f(x) = x2
Z = {O, ±1, ±2, ±3, ....}
(a) f : Z → Z
Let -1, 1 ∈ Z, f (-1) = f(1)
⇒ 1 = 1
But -1 ≠ 1 ∴f is not one-one i.e., f is not injective.
(b) There are many such elements belongs to co-domain have no pre-image in its domain z.
e.g., 2 ∈ Z (co-domain). But `2^(1//2) != Z` (domain)
∴ Element 2 has no pre-image in its domain Z.
f is not onto i.e., f is not surjective.
APPEARS IN
संबंधित प्रश्न
A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [y: f(y) = −1].
f, g, h are three function defined from R to R as follow:
(iii) h(x) = x2 + 1
Find the range of function.
Let A = [p, q, r, s] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(ii) fg
If f(x) = cos [π2]x + cos [−π2] x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).
Write the domain and range of \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\] and h(x) = f(x) g(x). Then, h(x) = 1
If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are
The domain of the function
Which of the following relations are functions? If it is a function determine its domain and range:
{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.
If f(x) = 3x + a and f(1) = 7 find a and f(4).
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(2)
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
Check if the relation given by the equation represents y as function of x:
2x + 3y = 12
If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b
Find the domain and range of the follwoing function.
h(x) = `sqrt(x + 5)/(5 + x)`
Express the area A of circle as a function of its radius r
Express the following exponential equation in logarithmic form
231 = 23
Express the following logarithmic equation in exponential form
log2 64 = 6
Write the following expression as a single logarithm.
`1/3 log (x - 1) + 1/2 log (x)`
Prove that alogcb = blogca
Answer the following:
Find whether the following function is one-one
f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}
Answer the following:
If b2 = ac. prove that, log a + log c = 2 log b
Answer the following:
If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy
Answer the following:
Find the range of the following function.
f(x) = [x] – x
Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Domain
Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the height of a person whose forehand length is 40 cm
Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f
If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______
Domain of function f(x) = cos–1 6x is ______.
Find the range of the following functions given by f(x) = |x − 3|
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`
The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval