मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Express the following exponential equation in logarithmic form 231 = 23 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the following exponential equation in logarithmic form

231 = 23

बेरीज

उत्तर

231 = 23

∴ 1 = log23 23  …[By definition of logarithm]

i.e. log23 23 = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११९]

APPEARS IN

संबंधित प्रश्‍न

If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


Which of the following are functions?


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Express the area A of a square as a function of its side s


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

ln e = 1


Prove that alogcb = blogca


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


If f(x) = 5x - 3, then f-1(x) is ______ 


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×