मराठी

If F(X) = (A − Xn)1/N, a > 0 and N ∈ N, Then Prove that F(F(X)) = X for All X. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

उत्तर

Given:
f(x) = (a − xn)1/na > 0
Now,
f(x)} = f (a − xn)1/n
             = [a – {(– xn)1/n}n]1/n
             = [ – (a – xn)]1/n
             = [ a – a + xn)]1/n = (xn)1/n = x(n × 1/n) = x

Thus, f(f(x)) = x.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.2 | Q 10 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Check if the following relation is function:


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its circumference C.


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×