मराठी

Let f(x) = x and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x) - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)

बेरीज

उत्तर

(f + g)(x)

⇒ (f + g)(x) = f(x) + g(x)

⇒ f(x) + g(x) = `sqrt(x)` + x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 21.(i) | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Define a function as a correspondence between two sets.

 

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of the function f(x) = log |x| is


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Prove that `"b"^(log_"b""a"` = a


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×